The (in)stability of process control mechanisms in reactive DC sputtering deposition

Simulation software

- **GUI + manual**
- **INPUT**
 - operation and material parameters
- **OUTPUT**
 - operation process curves (with hysteresis)

- **System observables:**
 - reactive gas pressure discharge current/voltage
 - target/substrate state

- **Operation parameters:**
 - reactive gas flow pumping speed discharge current/voltage

Problem: Criticality mechanisms during reactive deposition

Planar 2 inch Al DC sputtered in Ar/O₂ atmosphere

- Increasing flow: **I = 0.35 A**
- Discharge current (A)
- Oxygen pressure (mPa)
- Discharge voltage (V)

Solution: Voltage control?

Stable

- **AI - Al₂O₃** (superposition of metallic and oxidized)
- Reactive IV-characteristic
- Q₀₂ = 1.2 sccm
- S = 30 L/s

Unstable

- **Ti - TiO₂ – – – –**
- Reactive IV-characteristic
- No!
- Q₀₂ = 1.2 sccm
- S = 30 L/s

Different oxidation states?

In-vacuo XPS determination of target composition proves existence of two additional sub-oxides TiO and Ti₂O₃ along hysteresis.

Reactive IV-characteristic is in fact a mixture of four

\[I = k(V - V_{\text{bias}})^2 \]

with \(i = \text{Ti}, \text{TiO, Ti}_2\text{O}_3, \text{TiO}_2 \)

and \(k_i \propto \gamma_{\text{see}, i} \), where

\[\gamma_{\text{see}, i} \propto \frac{1}{\Delta E_i} \]

Different

Target composition

- Reactive gas fraction
- Target reaction

Solution: Voltage control?

- Superposition of metallic and oxidized
- Reactive IV-characteristic
- TiO and Ti₂O₃ along hysteresis.

Reactive IV-characteristic is in fact a mixture of four

\[I = k(V - V_{\text{bias}})^2 \]

with \(i = \text{Ti}, \text{TiO, Ti}_2\text{O}_3, \text{TiO}_2 \)

and \(k_i \propto \gamma_{\text{see}, i} \), where

\[\gamma_{\text{see}, i} \propto \frac{1}{\Delta E_i} \]

Target composition

- Reactive gas fraction
- Target reaction

Solution: Voltage control?

- Superposition of metallic and oxidized
- Reactive IV-characteristic
- TiO and Ti₂O₃ along hysteresis.

Reactive IV-characteristic is in fact a mixture of four

\[I = k(V - V_{\text{bias}})^2 \]

with \(i = \text{Ti}, \text{TiO, Ti}_2\text{O}_3, \text{TiO}_2 \)

and \(k_i \propto \gamma_{\text{see}, i} \), where

\[\gamma_{\text{see}, i} \propto \frac{1}{\Delta E_i} \]