Tuning the ion energy by bipolar HiPIMS to control of Mg thin film microstructure

F. Moens1,2, Matthieu Michiels2, S. Konstantinidis2, D. Depla1

Dedicated Research on Advanced Films and Targets

1Ghent University

2UMons
Introduction

![Graph of Direct Current](image1.png)

- Direct Current + Substrate bias

![Graph of HiPIMS](image2.png)

- HiPIMS

![Graph of Bipolar HiPIMS](image3.png)

- Bipolar HiPIMS

DC growth

- 70 sccm Ar
- 0.8 Pa Ar pressure
- TS distance = 10 cm
- Pole figure measurement = 32° tilt

- Si 001 substrate
- Deposition rates increase linearly with discharge current
 - 0.07 μm/min → 0.25 μm/min

![SEM Image](image4.png)
DC growth

- 70 sccm Ar
- 0.8 Pa Ar pressure
- TS distance = 10 cm
- pole figure measurement = 32° tilt
- Si 001 substrate
- Deposition rates increase linearly with discharge current
 0.07 μm/min → 0.25 μm/min

Introduction

Direct Current

+ Substrate bias

HIPIMS

Bipolar HIPIMS
Experimental conditions

- DC Mg growth
- I = 0.4 A
- Bias at substrate
- 0 to -100 V in steps of 20 V
- 0 to -1000 V in steps of 200 V

Fractions 0 to -1000V
SEM images substrate bias

![SEM images substrate bias](image)

Introduction

![Graphs showing Direct Current and Bipolar HIPIMS](image)

- **Direct Current**
 - Substrate bias

- **Bipolar HIPIMS**

Table:

- **Introduction**
 - DC growth
 - DC + Bias
 - HIPIMS increasing peak power
 - Bipolar HIPIMS
 - Comparison
 - Conclusion
HiPIMS Experiments

- What is the effect of increasing peak power density?
- Varying off time while keeping on time constant 20 μs
- Constant average current
 - Amplitude V increases
 - I increases
 - Power during peak increases
 - Deposition rate constant 0.05 μm/min

![Graph showing current and voltage over time with peak power density values]

![Graph showing orientation fraction vs. off time with (002) and (103) orientations]
HiPIMS Experiments

Energy of magnesium ions
Energy of magnesium ions

- In D.C. magnetron putting energetic particles from reflection on target
- Mg on Mg same mass reflection is unlikely and favors low energetic particles
- Sputtering does not offer an explanation
- Sputtered particles follow a Thompson energy distribution
- Peak at U₂J followed by a tail

\[\frac{E}{(E + U_s)^3} \, dE \]

Mg⁺ vs Ar⁺ ions

![Graph showing Mg⁺/Ar⁺ ratio vs. Off time (μs)]
Introduction

Direct Current

- Voltage (V) vs. Time (µs)

HiPIMS

- Voltage (V) vs. Time (µs)

Bipolar HiPIMS

- Voltage (V) vs. Time (µs)

Bipolar pulse shape

- Voltage (V) vs. Time (µs)

- Parameters: \(\tau_+ \) and \(\tau_- \)
Bipolar pulse shape

\[\text{current (A)} \]
\[\text{Voltage (V)} \]

\[\text{Time (µs)} \]

Bipolar pulse: ion energy distribution

\[\tau = 20 \mu s \quad \tau = 100 \mu s \quad V_+ = 50 \text{ V} \quad V_- = -700 \text{ V} \]
Bipolar pulse: ion energy distribution

\[\tau_+ = 20 \mu s \quad \tau_- = 100 \mu s \quad V_+ = 50 \text{ V} \quad V_- = -700 \text{ V} \]

\[\tau_+ = 20 \mu s \quad \tau_- = 100 \mu s \quad V_+ = 50 \text{ V} \quad V_- = -700 \text{ V} \]

\[\text{Ar}^+ \]

- HiPIMS
- \(\tau_+ = 50\mu s \)
- \(\tau_- = 600\mu s \)
Bipolar pulse: ion energy distribution

\[\tau_+ = 20 \, \mu s \quad \tau_- = 100 \, \mu s \quad V_+ = 50 \, V \quad V_- = -700 \, V \]

![Graph showing ion energy distribution with Mg ions and different time constants.]

\[\text{Counts per second (c/s)} \]

![Energy (eV) scale from 0 to 300.]

Legend:
- HiPIMS
- \(\tau_+ = 50 \, \mu s \)
- \(\tau_- = 600 \, \mu s \)
Bipolar pulse: ion energy distribution

\[\tau_+ = 20 \mu s \quad \tau_- = 100 \mu s \quad V_+ = 50 \text{ V} \quad V_- = -700 \text{ V} \]

![Graph showing ion energy distribution with Mg ions and different time constants.

Mg thin film depositions

![Graph showing orientation fraction of Mg thin films as a function of positive bias voltage with different orientations labeled.

Regular HiPIMS

(002) (101) (102) (100) (110) (103)
Mg thin film depositions

![Image of Mg thin film depositions with voltages +0 V, +25 V, +100 V, +125 V, +150 V, +200 V.]

Comparison Bipolar Hipims – DC with substrate bias

Bipolar Hipims
Positive bias at target
Electrons attracted at target
Positive ions increase the plasma potential
Ions are accelerated at potentials 0 V → +V₀
Entire volume between target and substrate

DC with negative substrate bias
Ar⁺
A sheath is formed around the substrate
Ions have to fly into the sheath (volume is smaller)
Ions will be accelerated to negative voltage
Comparison Bipolar HiPIMS – HiPIMS

Bipolar HiPIMS

Positive bias at target
Electrons attracted at target
Positive ions increase the plasma potential
Ions are accelerated at potentials $0 \, V \rightarrow +V_0$
Entire volume between target and substrate

HiPIMS increasing peak power
Mg+/Ar+ increases
Mg transfers energy more efficiently
Implanted Mg can be incorporated in the lattice
Low energy reflected Mg can be incorporated at the surface
When increasing peak power Mg⁺ ions can get very high energetic

Conclusion

- Bipolar HiPIMS offers an alternative to substrate biasing
- BHiPIMS and DC+Bias: a porous film can be grown
- Ions are accelerating at energies up to bias voltage
- Likely more substrate heating
- DC+Bias: columns oriented in the (002) direction
- Increasing power in HiPIMS results also in energetic bombardment
- Mg ionization is increased
- Very dense films can be grown
Acknowledgements

- Matthieu Michiels: Materia Nova power supply